ROUND I: ARITHMETIC - ORDER OF OPERATIONS \& EVALUATION
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM
\ldots Simplify: $\quad 6 \cdot 7-2^{5}+4 \div \frac{1}{4} \div 2+1 \cdot 0$.
caa). Let $x=-1$ and evaluate $15 x^{5}-23 x^{3}+14 x^{2}-5 x-8$.

2(b). Let $a=-3, b=-6, \quad c=2$. Evaluate the polynomial $2 a^{2}+\frac{1}{3} b^{2}-1.5 c^{2}$.
3. If $x=3 x+2, \quad \hat{x}=\frac{x^{2}+2}{3}$, and $x * y=0-\Delta$, evaluate $2 * 3$.

ANSWERS: (1 point) 1.
(1 point) 2(a).
(1 point) 2(b). \qquad
(3 points) 3. \qquad

St. Peter-Marian, Shepherd Hill, Worcester Academy

ROUND II: LINEAR EQUATIONS
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Solve for $x ; \quad \frac{x-4}{4}+\frac{x-5}{5}-\frac{x-2}{2}=2$.
2. Solve for $x ; 5 x+7-[2+3(2 x-3)+1]=6$.
3. If $a \neq c$, solve for x; $a x-(b-g)=c x-(-3 b+4 g)$.
4. Solve for Δ in terms of \# and ϕ;

$$
2 \Delta \#+2 \phi=(4 \#-6 \Delta \phi) 3-4(\#-\phi) .
$$

ANSWERS:
(1 point) 1. $x=$
(1 point) 2. $x=$
(2 points) 3. $x=$
(2 points) 4. $\triangle=$

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. Simplify;

2. A certain telephone ring lasts 5 seconds. The pause between rings lasts 6 seconds. If the phone begins ringing at 5:15 P.M. and the last ring ends exactly at 5:16 P.M., how many rings were there?
3. If $5 x+3 y=73$, find five ordered pairs (x, y) which satisfy the equation such that x and y are positive integers.

ANSWERS: (1 point) 1.
(2 points) 2. \qquad
(3 points) $3.1, \quad,(),,(),,($,

St. Peter-iiarian, Shepherd Hill, Worcester Academy

November 4, 1981 WOCOMAL FRESHMAN MEET
ROUND IV: GEOMETRY - PERIMETER \& AREA; VOLUME OF RECTANGULAR SOLIDS
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM

1. The side of a square is $3 / 5$ the side of an equilateral triangle. If the sum of the perimeters of the two figures is 810 meters, what is the side of the triangle?
2. In a rectangular solid with a square base, the area of the base is $4 \mathrm{sq} . \mathrm{cm}$. and the volume of the solid is $20 \mathrm{cu} . \mathrm{cm}$. . Find the total surface area of the solid.
3. The width of one rectangle is 5 cm . shorter than the length of a second rectangle. The length of the first rectangle is 14 cm . and the width of the second rectangle is 9 cm. . The area of the second rectangle is $10 \mathrm{sq} . \mathrm{cm}$. greater than the area of the first. Find the dimensions of the first rectangle.

ANSWERS: (2 points) 1. meters
(2 points) 2. sq. cm.
(2 points) 3. cm. by cm.

Auburn, Marlboro

November 4, 1981
WOCOMAL FRESHMAN NEET
TEAM ROUND: NUMBER THEORY, PRIMES, DIVISIBILITY, LCM, GCF, SEQUENCES
ALL ANSWERS MUST BE EXPRESSED IN SIMPLEST EXACT FORM
EACH ANSWER COUNTS THREE POINTS
ANSWERS

1. Find the least common multiple of 10,14, 15 , and 21.
2. Find the greatest common factor of 162,270 , and 432.
3. Give the next three terms of the sequence $\{1,4,13,40, \ldots\}$.
4. What is the sum of the two largest prime numbers less than 100?
5. The greatest common factor of two numbers is
6. 33. The least common multiple is 726 . If one number is 363, what is the other number?
1. Find the next two numbers in the sequence
2. $\{256,16,4, \ldots\}$.
3. Two numbers are called relatively prime if 7. they have no common factors other than one. How many positive integers are less than 100 and relatively prime to 100?
4. What is the least common multiple of the seven
5. smallest non-prime numbers that are not divisible by $2 ?$

Auburn, Hudson, Hudson Catholic, Marlboro, St. Peter-Marian, Shepherd Hill, Worcester Academy
November $4 . \$ 981$ WOCOMAL FRESHMAN MEET ANSWERS
ROUND I
TEAM ROUND3 points each
(point) i. 18
(1 point) 2(a). 19 \&. 210
(1 point) $2(b)$. 24
(3 points) 3. 9
2. 54
ROUND II
3. 121: 364, 1093
(i point) io $x=-60$
(2point) $20 \quad x=7$4. 286

(2 points) 4. $\Delta=\frac{44+9}{7+96}$ 5. 66
ROUND III
(1 point) 1. 3
(2 points) 2 6
(3 points) 3. $(2,21)_{0}(5,16),(8,21)$
(11,6) $(14,1)$
ROUND IV 8. 51975
((points) i. 150 meters
(2 points) 2. $48 \mathrm{sq} . \mathrm{cm}_{\mathrm{c}}$
(2 points) 3. 7 cm 。 by It cm.
6. $2_{0} \sqrt{2}$
7.40 40

